Совместный бакалавриат ВШЭ и РЭШ. Курс лекций.
предыдущий раздел следующий раздел оглавление
© А. В. Марков, 2011
Курс лекций
ВЕРОЯТНОСТИ. Одна авиакатастрофа примерно на 106 часов полета. Даже если мы летаем очень много, допустим, по 102 часов в год, то за свою жизнь налетаем не более 5000 часов. Вероятность погибнуть в авиакатастрофе всего лишь 1/200 (пренебрежимо мало). Но если бы мы жили по 100000 лет, то за жизнь летали бы 107 часов, и практически гарантированно погибали бы в авиакатастрофе.
Путь от неорганических молекул к первой живой клетке был долгим и трудным. За один шаг такие превращения не происходят. На этом долгом пути было множество развилок, остановок, временных отступлений, всевозможных промежуточных этапов и «переходных звеньев». Досаднее всего, что эти события не оставили, по-видимому, никаких следов в палеонтологической летописи. Земная кора просто не сохранила столь древних пород. К тому же ранние этапы пути могли быть пройдены и вовсе не на Земле, а в протопланетном облаке или на других небесных телах. Что касается «переходных звеньев», то все они вымерли, не оставив после себя прямых потомков, за исключением одного-единственного — так называемого «последнего универсального общего предка» всех современных живых существ. Специалисты называют его Лукой (Last Universal Common Ancestor, LUCA). Лука был уже довольно сложным организмом, напоминающим бактерию.
Доказательства единого происхождения: у всех – ДНК, РНК и белки; единый генетический код; близкие системы репликации, транскрипции и трансляции.
Поэтому приходится довольствоваться разработкой гипотез о том, КАК мог быть пройден долгий путь от мертвой материи к живой клетке. Эти гипотезы поддаются экспериментальной проверке, но таким способом можно доказать только принципиальную возможность того или иного хода событий. Гораздо труднее доказать, что все на самом деле именно так и происходило.
Тем не менее даже в этой крайне трудной области исследователи в последние годы добились заметных успехов.
Этапы зарождения жизни:
Наши предки и не подозревали, что вопрос о происхождении живого из неживого может стать серьезной проблемой для их потомков. Для них все вокруг было живым, одухотворенным. Мудрецы Античности и Средневековья не видели непреодолимой грани между живым и неживым. Вслед за Аристотелем вплоть до XVII века все ученые считали зарождение жизни самым обычным, повседневным явлением. В гниющих отходах зарождаются черви и мухи, в старом тряпье — мыши, на подводных камнях и днищах кораблей — моллюски. Могучая «животворная сила» пронизывает мироздание; она-то и заставляет косную материю порождать жизнь. Это учение — витализм — не противоречило и библейской версии космогенеза. «И сказал Бог: да произрастит земля зелень...» «И сказал Бог: да произведет вода пресмыкающихся...» Бог дал стихиям творческие силы. И с тех пор — чему же удивляться? — вода производила, а земля произращивала.
Реди доказал, что личинки мух не заведутся в тухлом мясе, если мясо накрыть тряпочкой, сделав его недоступным для взрослых мух.
Публика согласилась с Реди, что такие сложные животные, как мухи и мыши, могут рождаться только от соответствующих родителей. Но вот простые одноклеточные организмы — они-то, несомненно, порождаются грязной водой, гниющими отходами и тому подобным. Эта концепция просуществовала в общественном сознании около ста лет, а затем ученый монах Ладзаро Спалланцани обнаружил, что микробы тоже размножаются — делятся пополам, давая начало таким же микроорганизмам. Мало того, когда он кипятил бульон и плотно закрывал его крышкой, никаких микробов там не появлялось.
Однако многие ученые считали, что для зарождения жизни необходима «жизненная сила». Она не может проникнуть в закрытую банку, именно потому там и не появляются микробы. Луи Пастер в 1865 году хитроумным экспериментом сумел доказать, что никакой жизненной силы нет.
С витализмом было покончено, но все дивиденды достались не науке, а... церкви. Нелегкая задача встала перед теми учеными, которые не хотели привлекать сверхъестественные силы для объяснения природных явлений. После того как была доказана невозможность самозарождения, они должны были теперь долго и мучительно доказывать его возможность. Пусть не здесь и сейчас, а очень давно, и не за час-другой, а за миллионы лет.
Поначалу дело казалось безнадежным, ведь химики еще не умели получать органические вещества из неорганических. Грань между живой и неживой материей казалась непреодолимой. Правда, еще в 1828 г. Фридрих Велер синтезировал мочевину, но это никого не убедило. Однако в 1854 г. Марселен Бертло сумел искусственно получить липиды, а в 1864 г. А. М. Бутлеров открыл реакцию синтеза углеводов из формальдегида. Вскоре химики научились получать и другие органические вещества из неорганических.
Стало ясно, что между живой и неживой материей на химическом уровне нет непреодолимой грани. Это был первый крупный успех теории абиогенеза. Ученые поняли, что, хотя прямое самозарождение живых существ невозможно, жизнь могла появиться постепенно в результате долгой химической эволюции. Эта теория, в отличие от креационизма, является научной, то есть допускающей принципиальную возможность опровержения. Например, если бы оказалось, что органические вещества действительно невозможно получить из неорганических, как думали многие вплоть до опытов Бертло и Бутлерова, то абиогенез пришлось бы признать несостоятельной теорией. Однако этого не происходит. Наоборот, по мере развития науки один за другим проясняются все новые этапы долгого пути от неживой материи к первой клетке.
Первые подступы к жизни
При взгляде на историю мироздания «с высоты птичьего полета» создается впечатление, что каждый новый шаг в эволюции Вселенной логически вытекал из предыдущего и в свою очередь предопределял следующий. Возникновение жизни кажется не случайностью, а закономерным итогом развития. Возможно, это самообман.
Даже небольшое изменение базовых физических констант сделало бы жизнь невозможной (по крайней мере такую жизнь, как наша). Впрочем, в такой Вселенной некому было бы и рассуждать о мудрости ее устройства. Кто знает, может быть, существует много разных Вселенных, и только в нашей все так удачно сложилось? Физики относятся к такой возможности вполне серьезно. И потом, развитие жизни идет по пути приспособления, адаптации, так что вполне естественно, что жизнь в нашей Вселенной соответствует ее законам. В другом мироздании и жизнь была бы другой. С этой точки зрения соответствие земной жизни земным условиям не более удивительно, чем соответствие формы воды, налитой в сосуд, форме сосуда.
Физики утверждают, что Вселенная появилась в результате Большого взрыва из очень малого и очень плотного объекта 13,7 миллиардов лет назад. В первые мгновения не было даже атомов и молекул. Вселенная стремительно расширялась и остывала. В определенный момент появились элементарные частицы, из них образовались атомы водорода (и дейтерия, гелия, лития); скопления атомов превратились в звезды первого поколения. В них происходила реакция ядерного синтеза, в ходе которой водород превращался в гелий, а затем и в более тяжелые элементы. Все необходимые для жизни элементы, кроме водорода (углерод, кислород, азот, фосфор, сера и другие), образовались в недрах звезд. Звезды первого поколения стали фабрикой по производству атомов, необходимых для будущей жизни.
Самые крупные звезды после истощения запасов ядерного топлива взрывались (это называют «взрывом сверхновой»). В результате таких взрывов атомы тяжелых элементов рассеивались в пространстве. Из новых скоплений атомов образовались звезды второго поколения, в том числе и наше Солнце. Облака рассеянных частиц, не вошедших в состав центральной звезды, вращались вокруг нее и постепенно разделялись на отдельные сгустки — будущие планеты. Именно на этом этапе и мог начаться синтез первых органических молекул.
Молодая Земля могла иметь в своем составе большое количество органики с самого начала своего существования. Абиогенный синтез органики продолжался уже на Земле.
Таким образом, могут абиогенно синтезироваться все важнейшие простые органические соединения, необходимые для жизни: углеводороды, сахара (реакция Бутлерова), жирные кислоты, аминокислоты, азотистые основания.
На этом этапе нам даже не нужно прибегать к аргументу о двух миллиардах триллионов планет!
Вместе с Землей возник и так называемый «геохимический круговорот». Одни вещества поступали из сдавленных, разогревшихся недр Земли, формируя первичную атмосферу и океаны. Другие приходили из космоса в виде падающих с неба остатков протопланетного облака, метеоритов и комет. В атмосфере, на поверхности суши и в водоемах все эти вещества смешивались, вступая друг с другом в химические реакции, и превращались в новые соединения, которые в свою очередь тоже вступали в реакции друг с другом.
Между химическими реакциями возникала своеобразная конкуренция — борьба за одни и те же субстраты (исходные вещества, необходимые для их проведения). В такой борьбе всегда побеждает та реакция, которая идет быстрее. Может начаться естественный отбор среди химических процессов. Медленные реакции постепенно затухают и прекращаются, вытесняемые более быстрыми.
Важнейшую роль в этом соревновании играли катализаторы — вещества, ускоряющие те или иные химические превращения. Огромное преимущество должны были получать реакции, катализируемые своими собственными продуктами. Такие реакции называют автокаталитическими или цепными. Типичный пример автокаталитической реакции — реакция Бутлерова, в ходе которой из формальдегида образуются сахара, которые сами и являются катализаторами этой реакции.
Следующий этап — формирование автокаталитических циклов, в ходе которых происходит не только синтез катализаторов, но и частичное возобновление расходуемых субстратов.
Жизнь в принципе можно рассматривать как сложный автокаталитический цикл.
*******
Гипотеза, предложенная А. Д. Пановым из Института ядерной физики. Небесные тела могут обмениваться веществом: при столкновении планеты с крупным астероидом из ее поверхности выбиваются фрагменты породы, которые могут улететь в космос и попасть на другие планеты. По расчетам Панова, благодаря такому «метеоритному обмену» возникшее в ходе химической эволюции на одной из планет полезное новшество (например, эффективный катализатор) может в течение обозримого времени попасть в другие звездные системы, а за несколько сотен миллионов лет ареал распространения новшества может охватить всю галактику — разумеется, при условии, что запас данного вещества будет возобновляться в цепочке спровоцированных им химических превращений. Гипотеза Панова расширяет масштаб химической «кухни», в которой подготавливались ингредиенты будущей жизни, от планетарного до галактического.
Общепринятого определения жизни нет. Нам известна только одна жизнь — земная, и мы не знаем, какие из ее свойств являются обязательными для любой жизни вообще. Можно предположить два таких свойства. Это, во-первых, наличие наследственной информации, во-вторых — активное осуществление функций, направленных на самоподдержание и размножение, а также на получение энергии, необходимой для выполнения всей этой работы.
Все живое на Земле справляется с перечисленными задачами при помощи трех классов сложных органических соединений: ДНК, РНК и белков. ДНК взяла на себя первую задачу — хранение наследственной информации. Белки отвечают за вторую: они выполняют все виды активных «работ». Разделение труда у них очень строгое.
Молекулы третьего класса веществ — РНК — служат посредниками между ДНК и белками, обеспечивая считывание наследственной информации. При помощи РНК осуществляется синтез белков в соответствии с записанными в молекуле ДНК «инструкциями». Некоторые из функций, выполняемых РНК, очень похожи на функции белков (активная работа по прочтению генетического кода и синтезу белка), другие напоминают функции ДНК (хранение и передача информации). И все это РНК делает не в одиночку, а при активном содействии со стороны белков. На первый взгляд РНК кажется «третьей лишней». В принципе нетрудно представить себе организм, в котором РНК вовсе нет, а все ее функции поделили между собой ДНК и белки. Правда, таких организмов в природе не существует.
Какая из трех молекул появилась первой? Одни ученые говорили: конечно, белки, ведь они выполняют всю работу в живой клетке, без них жизнь невозможна. Им возражали: белки не могут хранить наследственную информацию, а без этого жизнь и подавно невозможна! Значит, первой была ДНК!
Ситуация казалась неразрешимой: ДНК ни на что не годна без белков, белки — без ДНК. Получалось, что они должны были появиться вместе, одновременно, а это трудно себе представить. Про «лишнюю» РНК в этих спорах почти забыли.
Потом, правда, выяснилось, что у многих вирусов наследственная информация хранится в виде молекул РНК, а не ДНК. Но это посчитали курьезом, исключением. Переворот произошел в 80-х годах XX века, когда были открыты рибозимы — молекулы РНК с каталитическими свойствами. Рибозимы — это РНК, выполняющие активную работу, то есть то, что должны делать белки.
В итоге РНК из «почти лишней» стала «почти главной». Оказалось, что она, и только она, может выполнять сразу обе главные жизненные задачи — и хранение информации, и активную работу. Стало ясно, что возможен полноценный живой организм, не имеющий ни белков, ни ДНК, в котором все функции выполняются только молекулами РНК. Конечно, ДНК лучше справляется с задачей хранения информации, а белки — с «работой», но это уже детали. РНК-организмы могли приобрести белки и ДНК позже, а поначалу обходиться без них.
Так появилась теория РНК-мира, согласно которой первые живые существа были РНК-организмами без белков и ДНК. А первым прообразом будущего РНК-организма мог стать автокаталитический цикл, образованный самовоспроизводящимися молекулами РНК — рибозимами, способными катализировать синтез собственных копий.
Лично я считаю теорию РНК-мира одним из самых выдающихся достижений теоретической мысли в биологии. По правде сказать, могли бы до этого додуматься и раньше. Ведь два вида рибозимов были известны еще с 60-х годов ХХ века, хотя их не называли тогда рибозимами. Это рибосомные РНК (рРНК), из которых сделаны молекулярные «машинки» для трансляции (синтеза белка) — рибосомы, и транспортные РНК (тРНК), которые подносят нужные аминокислоты к рибосомам в ходе трансляции.
Теория РНК-мира, вначале чисто умозрительная, быстро «обрастает» экспериментальными данными. Химики научились получать рибозимы чуть ли не с любыми желаемыми характеристиками. Делается это так. Например, мы хотим создать молекулу РНК, которая способна безошибочно узнавать вещество Х и связываться с ним. Для этого синтезируют большое количество разных цепочек РНК, соединяя рибонуклеотиды друг с другом в случайном порядке. Раствор, содержащий полученную смесь молекул РНК, наливают на поверхность, покрытую веществом Х. После этого остается лишь отобрать и исследовать те молекулы РНК, которые прилипли к поверхности. Технология незамысловата, но она действительно работает. Примерно таким способом получены рибозимы, катализирующие синтез нуклеотидов, присоединяющие аминокислоты к РНК и выполняющие множество других биохимических функций.
Мы уже знаем про эксперименты по искусственной эволюции рибозимов.
И все же проблема отбора удачных рибозимов-мутантов в экспериментах по искусственной эвролюции во многих случаях оказывается технически очень трудной. Но она постепенно решается.
Любопытно, что многие рибозимы работают лучше всего при низких температурах, иногда даже ниже точки замерзания воды — в крошечных полостях льда, где достигаются высокие концентрации реагентов. Некоторые считают это свидетельством того, что жизнь зарождалась при низких температурах. Рекомбинация!
Как решаются проблемы теории
1. Абиогенный синтез нуклеотидов
Одна из проблем до недавнего времени состояла в том, что химикам не удавалось подобрать реалистичные условия, в которых из азотистых оснований, рибозы и фосфорной кислоты сами собой синтезировались бы рибонуклеотиды. И азотистые основания, и рибоза могут формироваться самопроизвольно из простейших ингредиентов в условиях, которые могли существовать на древней Земле или в протопланетном облаке. Но вот объединяться вместе, чтобы образовать рибонуклеотид, они в этих условиях отказываются. Точнее говоря, пуриновые нуклеотиды (аденозин А, гуанозин Г) синтезируются, но с низкой эффективностью, а пиримидиновые (уридин У, цитидин Ц) не синтезируются совсем. Кроме того, очень трудно получить рибозу и «правильные» азотистые основания в достаточно чистом виде. Обычно образуется чудовищная смесь всевозможных сахаров или азотистых соединений, в которой «нужные» вещества составляют лишь незначительный процент. В ходе дальнейших самопроизвольных реакций все эти вещества соединяются друг с другом тысячами разных способов, и обычно всё кончается образованием нерастворимых смол, из которых уже почти невозможно получить что-то путное.
В 2009 г. химик Джон Сазерленд (John Sutherland) и его коллеги из Манчестерского университета (Великобритания) нашли замечательный «обходной путь», позволяющий синтезировать рибонуклеотиды не из готовых крупных блоков — рибозы и азотистых оснований — а из более простых органических молекул.
В основе их открытия лежат три замечательные находки.
Первая состоит в том, что они догадались сразу добавить в реакционную смесь фосфорную кислоту (неорганический фосфат). До сих пор все исходили из естественного допущения, что фосфат нужен только на последней стадии синтеза рибонуклеотида, когда фосфат присоединяется к рибозе, которая до этого уже присоединилась к азотистому основанию. Однако оказалось, что фосфат необходим и на ранних стадиях процесса. Его присутствие снижает выход разнообразных «ненужных» веществ в ходе реакций и повышает выход «нужных».
Вторая находка состоит в том, что исследователи с самого начала поместили в реакционную смесь и вещества, основанные на углероде и кислороде (простейшие углеводы), и азотистые соединения. До сих пор с этими двумя классами веществ работали по отдельности, пытаясь из первых синтезировать сахара, а из вторых — азотистые основания. Смешивать их в одну кучу с самого начала считалось бесперспективным, так как это резко повышает химическую «комбинаторику», то есть разнообразие получаемых продуктов, и без того слишком большое. Но фосфат резко снижает эту комбинаторику, и в результате из исходной смеси эффективно синтезируются в большом количестве ключевые промежуточные продукты, не являющиеся ни сахарами, ни азотистыми основаниями (на рисунке они обозначены числами 11 и 12).
Все вещества исходной смеси вполне могли существовать на ранней Земле. Кроме фосфата, в смесь входят простейшие азотистые соединения — цианоацетилен (7) и цианамид (8) и простейшие углеводы — гликольальдегид (10) и глицеральдегид (9). В присутствии фосфата вещества 8 и 10 с большой эффективностью соединяются и образуют вещество 11 (2-амино-оксазол). Следующая реакция (соединение веществ 11 и 9) обычно ведет к образованию множества побочных продуктов, однако присутствие фосфата снова оказывается спасительным, резко повышая выход «нужного» вещества 12 (арабинозо-амино-оксазолин).
На следующем этапе вещество 12 реагирует с цианоацетиленом (7). В обычном водном растворе эта реакция сопровождается временным повышением pH, в результате чего промежуточные продукты гидролизуются, цианоацетилен начинает реагировать с гидроксильными группами, и в итоге получается смесь «ненужных» продуктов, от которых нельзя проложить путь к рибонуклеотидам. Однако и в этом случае на помощь приходит фосфат: он играет роль буфера, в его присутствии pH не повышается, и «вредный» гидролиз резко замедляется. Более того, избыток цианоацетилена начинает реагировать не с гидроксильными группами «полезных» промежуточных продуктов, а с фосфатом, и в результате выход нужного вещества 13 (арабинозо-ангидронуклеозид) из практически никакого становится очень высоким. Таким образом, в данном случае фосфат выполняет сразу две полезные функции, выступая в роли стабилизатора кислотности и химического буфера.
Теперь до настоящего активированного рибонуклеотида, пригодного для синтеза РНК, остался один шаг. Вещество 13 нужно фосфорилировать, чтобы оно превратилось в активированный рибонуклеотид Ц (бета-рибоцитидин-2’,3’-циклофосфат; на рисунке это вещество обозначено номером 1).
Как выяснилось, для этого реакционную смесь нужно только немного подогреть («настало утро, вода в луже согрелась»), а всё необходимое в ней уже имеется. Роль ключевого катализатора реакции фосфорилирования берет на себя, как ни странно, мочевина (6), которая образуется сама собой из излишков цианамида, изначально присутствовавшего в смеси.
Открытый путь абиогенного синтеза цитидина поражает своим изяществом. Особенно впечатляет использование побочных продуктов, получающихся на предыдущих этапах пути, в качестве необходимых помощников на следующих этапах.
Но это еще не всё. Вместе с «правильным» нуклеотидом Ц в ходе последней реакции получается и ряд других, «неправильных» нуклеозидов и нуклеотидов, которые мешают дальнейшему синтезу «правильных» молекул РНК. Авторы стали искать способ избавиться от этих побочных продуктов. Кроме того, они надеялись получить из цитидина еще и второй пиримидиновый нуклеотид — уридин (У).
То, что они в итоге обнаружили, слегка похоже на чудо. Оказалось, что обе цели достигаются одной простой мерой — ультрафиолетовым облучением, которого, конечно, на древней Земле было вдоволь, поскольку озоновый слой отсутствовал. Под воздействием ультрафиолета все «лишние» нуклеотиды постепенно разрушаются, а цитидин остается, и часть его превращается в уридин. В отличие от всех остальных пиримидиновых нуклеотидов, Ц и У оказались устойчивы к ультрафиолету. Не правда ли, это очень похоже на четкий и простой ответ на вопрос о том, почему из всех возможных пиримидиновых нуклеотидов в состав РНК вошли именно Ц и У?
Две простые и «реалистичные» добавки – фосфат и ультрафиолет – сразу решают кучу проблем, и все получается правильно. + Ультрафиолет нужен и в «цинковом мире».
Авторы нашли принципиально новый подход к абиогенному синтезу нуклеотидов, решили одну из труднейших проблем в теории происхождения жизни и открыли широкий простор для дальнейших исследований.
Путь абиогенного синтеза нуклеотидов, открытый Сазерлендом и его коллегами, хорошо идет при температурах и pH, встречающихся в небольших водоемах. Если водоем иногда пересыхает, это ускоряет дело, т.к. достигаются высокие концентрации реагентов.
В письме своему другу Джозефу Хукеру Дарвин осторожно предположил, что жизнь могла зародиться из неживой материи в «маленьком теплом пруду со всеми видами аммония, солей фосфора, светом, теплом, электричеством и т. д.». Вполне возможно, что он и на этот раз оказался прав.
Однако он полагал, что эту догадку едва ли удастся проверить, потому что в наши дни любое самопроизвольно образовавшееся органическое вещество немедленно будет съедено и переварено живыми организмами — чего, конечно, не произошло бы в те времена, когда жизнь еще не зародилась.
Скептическое отношение к возможности разгадать тайну зарождения жизни сохранялось довольно долго. Еще лет 50 назад попытки разгадать тайну происхождения жизни считались уделом «престарелых ученых в конце их карьеры, когда они могут просто сидеть в кресле и рассуждать». Вспомним, как Н. В. Тимофеев-Ресовский ехидно отвечал на вопросы о происхождении жизни: «Я тогда маленький был, не помню, вы спросите лучше у академика Опарина, он знает».
(Насмешки начали сходить на нет после опытов Миллера).
2. Проблема рибозимов – РНК-полимераз
Ключевым компонентом РНК-мира предположительно были молекулы РНК с РНК-полимеразной активностью, то есть рибозимы, катализирующие репликацию молекул РНК. Без таких рибозимов в мире РНК была бы невозможна настоящая наследственность и дарвиновская эволюция. У современных живых организмов такие рибозимы не обнаружены: по-видимому, они давно вытеснены более эффективными белковыми ферментами-полимеразами. Поэтому для того, чтобы реконструировать ранние этапы зарождения жизни, а заодно и окончательно доказать возможность существования способного к дарвиновской эволюции мира РНК, очень важно получить такой рибозим искусственно.
Ученые бьются над этой задачей уже более 10 лет, применяя попеременно то метод искусственной эволюции (случайные мутации + отбор удачных вариантов), то сознательное проектирование. Оба метода сталкиваются с трудностями. Возможности «разумного дизайна» ограничены отсутствием надежных методов предсказания каталитических свойств рибозимов по их первичной структуре (последовательности нуклеотидов). Для эффективной «искусственной эволюции» нужно научиться каким-то образом выбирать из огромного множества слегка различающихся молекул ту, которая лучше всех справляется со своей задачей, в данном случае — с копированием молекул РНК. Это непросто, потому что те рибозимы-полимеразы, которые удалось получить на сегодняшний день, не могут размножать сами себя (в этом случае проблема отбора была бы решена: какого рибозима в пробирке окажется больше, тот и «победитель»). Речь пока идет только о копировании фрагментов других молекул РНК (матриц), причем не любых, а со строго определенной нуклеотидной последовательностью. Если просто поместить в пробирку миллион разных рибозимов, то как потом узнать, какой из них насинтезировал больше копий матрицы?
До недавних пор высшим достижением науки в области создания рибозимов-РНК-полимераз был рибозим R18.
Этот рибозим использует в качестве матрицы одноцепочечную молекулу РНК с заранее подготовленной «затравкой» (праймером). Праймер — это небольшой кусочек комплементарной цепи РНК, присоединенный к одному из концов матрицы. Рибозим R18 достраивает комплементарную цепь, начиная от праймера. Максимум, чего от него можно добиться, — это присоединения 15–20 комплементарных нуклеотидов. Иными словами, если повезет, он может скопировать фрагмент молекулы РНК (матрицы) длиной до 20 нуклеотидов. В большинстве случаев, впрочем, процесс репликации РНК прерывается раньше. У R18 есть еще один недостаток: он копирует далеко не любую матрицу, а только узкий круг нуклеотидных последовательностей. Эффективность работы R18 сильно зависит от нуклеотидной последовательности матрицы. Этим R18 радикально отличается от «настоящих», белковых полимераз, которые копируют любые матрицы с одинаковой эффективностью и которым совершенно всё равно, в какой последовательности расположены в матрице нуклеотиды.
Попытки радикально улучшить работу R18 до сих пор были безуспешны. Появились даже опасения, что R18 представляет собой «эволюционный тупик», что его в принципе нельзя усовершенствовать путем внесения небольших изменений и нужно искать что-то совсем другое. Надо сказать, что пространство для поиска невообразимо велико: рибозим R18 состоит из 189 нуклеотидов; общее число возможных молекул РНК такой длины равно 4189 ≈ 10114. Это на много порядков больше числа элементарных частиц во Вселенной. Перепробовать все эти варианты, разумеется, невозможно.
Новая работа американских молекулярных биологов, опубликованная в журнале Science в 2011 г, показала, что R18 всё-таки не является тупиком, и на его основе можно изготовить более эффективные РНК-полимеразы. Выяснить это позволила новая методика, благодаря которой удалось резко ускорить «искусственную эволюцию» рибозимов с полимеразной активностью. Суть методики в том, что ДНК-овые гены множества слегка различающихся рибозимов прикрепляют к крошечным магнитным шарикам, которые, в свою очередь, помещаются в водно-жировую эмульсию, так что каждый шарик со своим геном оказывается изолирован от остальных в маленькой водяной капле. В этой капле при помощи ферментов осуществляется транскрипция — синтезируется множество копий рибозима, после чего рибозимам дают возможность реплицировать РНК-матрицу. Затем следует еще несколько хитрых операций, в результате которых те шарики, на которых рибозимы поработали наиболее успешно, метятся флуоресцентными метками. Остается только извлечь ярко светящиеся шарики и выяснить (путем секвенирования прикрепленного к шарику гена), что за рибозим так хорошо справился со своей работой.
Эта замечательная методика (в сочетании с еще несколькими методологическими новшествами) позволила авторам перепробовать десятки миллионов модификаций исходного рибозима R18. Конечно, десятки миллионов — это исчезающе малая доля от устрашающего числа 10114. Тем не менее этого оказалось достаточно, чтобы найти варианты, справляющиеся с функцией РНК-полимеразы намного лучше, чем R18.
Отбор велся в двух направлениях. С одной стороны, отбирались рибозимы, способные наиболее эффективно копировать одну стандартную матрицу. Так был получен рибозим C19. Разобравшись в его структуре, авторы сумели внести в него дополнительные усовершенствования методом «разумного дизайна» и получили еще более эффективный рибозим tC19. После этого был проведен еще и отбор матриц: внося изменения в стандартную матрицу, авторы «вывели» такую ее модификацию, которую рибозим tC19 копирует наиболее эффективно. В результате удалось поставить рекорд: рибозим скопировал участок молекулы РНК длиной в 95 нуклеотидов. На сегодняшний день это самая длинная молекула РНК, синтезированная рибозимом из отдельных нуклеотидов.
В другой серии экспериментов авторам удалось, используя несколько разных матриц, вывести рибозим, полимеразная активность которого не так сильно зависит от нуклеотидной последовательности матрицы. Этот рибозим обозначили буквой Z.
После этого ученые объединили полезные новшества, характерные для рибозимов tC19 и Z, в одной молекуле, и создали свой шедевр — рибозим tC19Z. В этом рибозиме соединились высокая полимеразная активность рибозима tC19 с повышенной универсальностью (низкой зависимостью от матрицы) рибозима Z.
Рибозим tC19Z способен копировать широкий круг матриц, причем делает он это с меньшим числом ошибок, чем все выведенные ранее рибозимы-полимеразы. Исходный рибозим R18 делает в среднем 4,3 ошибок на 100 присоединенных нуклеотидов, tC19 работает точнее (2,7 неправильных или пропущенных нуклеотидов на сотню), tC19Z ошибается еще реже (0,88 ошибок на 100 нуклеотидов).
Чтобы продемонстрировать широкие возможности рибозима tC19Z, авторы успешно размножили с его помощью не специально созданную для этой цели и больше ни на что не годную матрицу, а настоящую функциональную молекулу РНК — другой рибозим, Mini-hammerhead. Этот рибозим состоит всего из 24 нуклеотидов, но обладает собственной каталитической функцией: он умеет разрезать РНК с определенной нуклеотидной последовательностью в одном строго определенном месте. Рибозим tC19Z успешно справился с копированием рибозима Mini-hammerhead. Тем самым впервые была продемонстрирована репликация функциональной молекулы РНК при помощи рибозима-полимеразы.
Полученные результаты — важный шаг на пути к созданию (или воссозданию?) полноценных рибозимов — РНК-полимераз, появление которых когда-то придало РНК-миру способность к дарвиновской эволюции.
Таким образом, уже известны рибозимы, которые могут размножать другие рибозимы небольшого размера. Но пока нет рибозимов, способных реплицировать самих себя. Впрочем, это и не обязательно! Могло быть разделение функций. Одни рибозимы могли реплицировать короткие фрагменты РНК, а другие рибозимы могли сшивать из них более крупные молекулы. Могла быть система поэтапной взаимной репликации. С рибозимами, способными скопировать короткие фрагменты РНК, мы уже познакомились. Известны также и рибозимы, сшивающие из коротких фрагментов крупные молекулы РНК.
Трейси Линкольн и Джеральд Джойс из Скриппсовского института в Сан-Диего (Калифорния, США) в 2009 году сумели подобрать несколько пар рибозимов, которые размножают друг друга. В результате такой взаимной репликации популяция рибозимов может расти в геометрической прогрессии сколь угодно долго — для этого нужно только исправно снабжать растущую популяцию необходимыми «ресурсами», то есть исходными материалами для синтеза новых молекул РНК. За 30 часов популяция может в благоприятных условиях вырасти в 100 млн раз. Более того, заставив несколько разных пар размножающихся рибозимов конкурировать друг с другом за субстрат, исследователи вынудили их начать дарвиновскую эволюцию. В результате спонтанных мутаций и естественного отбора появились рекомбинантные рибозимы с повышенной скоростью размножения.
В отличие от прежних опытов, в которых удавалось добиться неограниченного размножения молекул РНК, в данном случае процесс идет без участия белковых ферментов. Единственная проблема – природа субстрата. Размножающиеся пары рибозимов не могут использовать в качестве исходного материала для сборки новых молекул РНК отдельные рибонуклеотиды: они умеют работать лишь с олигонуклеотидами, то есть с довольно длинными фрагментами РНК, состоящими из многих рибонуклеотидов.
Но ведь мы уже знаем, что рибозимы – РНК-полимеразы (tC19Z) в состоянии размножать короткие молекулы РНК!
Все организмы дискретны в пространстве и имеют наружную оболочку. Однако поначалу преджизнь существовала, вероятно, в виде «живых растворов». Чтобы не раствориться окончательно, они должны были ютиться в крошечных полостях, которые часто встречаются в минералах. Это тем более удобно, что некоторые минералы (пирит, сульфид цинка) являются неплохими катализаторами для биохимических реакций. Поверхность минералов могла служить матрицей, основой, к которой прикреплялись молекулы РНК. Упорядоченная структура кристаллов помогала упорядочить и структуру этих молекул, придать им нужную пространственную конфигурацию.
Но рано или поздно преджизнь должна была обзавестись собственными оболочками — перейти от доорганизменного уровня к организменному. Идеальным материалом для таких оболочек являются липиды, молекулы которых способны образовывать на поверхности воды тончайшие пленки. Если взболтать такую воду, в ее толще образуется множество мелких пузырьков — водяных капелек, покрытых двухслойной липидной оболочкой (мембраной). Эти капельки проявляют интересные свойства, которые делают их похожими на клетки. Липидные мембраны обладают избирательной проницаемостью: одни молекулы сквозь них проходят, другие — нет. Благодаря этому одни вещества втягиваются в каплю, другие выводятся, третьи — накапливаются внутри. Правда, для того, чтобы это происходило постоянно, одних мембран недостаточно. Нужно еще, чтобы внутри капли одни вещества превращались в другие, а для этого там должны находиться катализаторы — белки или РНК.
Изучением свойств водно-липидных капель (коацерватов) занимался академик А. И. Опарин. Он считал, что коацерваты были одним из этапов на пути возникновения жизни. Опарин обнаружил, что при определенных условиях коацерваты могут расти и даже «размножаться» делением.
Первые коацерваты могли образоваться самопроизвольно из липидов, синтезированных абиогенным путем. Впоследствии они могли вступить в симбиоз (взаимовыгодное сожительство) с «живыми растворами» — колониями самовоспроизводящихся молекул РНК, среди которых были и рибозимы, катализирующие синтез липидов. Подобное сообщество уже можно назвать организмом.
Предположение о первичности гетеротрофов (так думали Опарин и Холдейн – теория «первичного бульона»). Или, может быть, жизнь зародилась в трещинах и полостях горных пород или в гидротермальных источниках, где пищей первым организмам служила органика, образующаяся в недрах Земли. «За»: 1) простые (теоретически). Использовать готовую органику для построения собственных клеток должны уметь все живые организмы, но автотрофам нужно вдобавок эту органику самим синтезировать из простых молекул. Логично предположить, что способность к связыванию CO2 и синтезу органики развилась позже, как «надстройка» над гетеротрофным метаболизмом. Но если совсем простые, как микоплазма, то очень требовательные. «Против»: 1) слишком быстро съели бы весь «первичный бульон» (впрочем, бульон мог и пополняться – например, за счет абиогенного фотосинтеза на сульфиде цинка) 2) крупные заряженные органические молекулы не пролезают сквозь липидные мембраны.
Другие считают более вероятным, что первые организмы были автотрофами, не нуждались в готовой органике и синтезировали ее сами из углекислого газа и других простых веществ, используя энергию окислительно-восстановительных реакций (хемоавтотрофы) или света (фотоавтотрофы).
Предположение о первичности фотоавтотрофов. Аргументы «за»: 1) древнейшие ископаемые микроорганизмы (3,5 млрд лет) внешне напоминают цианобактерий (хотя внешнее сходство – плохой критерий). 2) самодостаточны (теоретически). Но нуждаются в доноре электрона. «Против»: 1) система фотосинтеза – сложная, а если донор электрона используется легкодоступный (вода), то совсем сложная, 2) сравнительная геномика не подтверждает.
Предположение о первичности хемоавтотрофов. «За»: 1) сравнительная геномика подтверждает очень большую древность не противоречит; самые архаичные по многим признакам прокариоты (археи) – как раз хемоавтотрофы; 2) действительно самодостаточны (например, могут жить в полной изоляции глубоко в недрах земли).
Это один из примеров эволюционных деревьев прокариот (с датировками)
Уже работают над созданием искусственных «протоклеток» – простейших живых систем, которые можно рассматривать как модели (реконструкции) древнейших этапов становления живой клетки.
Это – разведка другого возможного пути к появлению первой живой клетки. Здесь предполагается, что протоклетки с оболочкой появились еще до того, как возникли рибозимы – РНК-полимеразы. Вначале, согласно этим моделям, репликация РНК шла вообще без помощи специальных катализаторов, будь то белки или рибозимы. Такое в принципе возможно, хотя процесс идет очень медленно.
У неферментативной репликации 3 основные проблемы: 1) не идет без праймера (как и репликация с помощью рибозимов), 2) реплицируется далеко не любая последовательность (как и при репликации с использованием рибозимов), 3) процесс очень медленный.
В ходе этих исследований удалось решить проблему непроницаемости мембраны для крупных органических молекул (это одна из проблем, ставящих под сомнение теорию о первичности гетеротрофов).
Мембрана протоклетки вовсе не обязательно должна была состоять из тех же липидов, что и мембраны современных клеток. Устойчивые двухслойные мембраны получаются из множества разных липидов, жирных кислот, спиртов и других амфифильных соединений (то есть имеющих полярную гидрофильную «голову» и гидрофобный углеводородный «хвост»). Такие молекулы в воде сами собой могут собираться в двухслойные пленки-мембраны: гидрофобные хвосты поворачиваются внутрь, подальше от воды, а гидрофильные «головы» торчат наружу, образуя оба поверхностных слоя мембраны.
Оказалось, что проницаемость мембраны зависит прежде всего от формы молекул, из которых она сделана: чем больше «голова» молекулы по отношению к длине «хвоста», тем выше проницаемость. Например, хорошей проницаемостью обладает мембрана из декановой кислоты с соответствующим глицериновым моноэфиром и декановым спиртом.
Однако нуклеотид-трифосфаты, как выяснилось, наотрез отказываются проходить сквозь любые липидные мембраны. Причина в том, что они несут слишком сильный отрицательный заряд. У нуклеотид-дифосфатов и нуклеотид-монофосфатов заряд меньше, и им удается пройти сквозь декановые мембраны, но из таких «кирпичиков» ДНК сама собой не синтезируется (напомню, речь сейчас идет о неферментативной репликации!)
Однако и здесь нашелся обходной путь. Нуклеотиды можно активировать иным способом — присоединив к ним вместо трех фосфатов один фосфат и молекулу имидазола (имидазол — органическое соединение, представляющее собой кольцо из трех атомов углерода и двух атомов азота; является составной частью одной из 20 «канонических» аминокислот —гистидина). Нуклеотиды, активированные имидазолом, годятся для синтеза ДНК и РНК, но имеют только один отрицательный заряд, а не четыре, как нуклеотид-трифосфаты.
Многие допускают, что на заре жизни для синтеза нуклеиновых кислот могли использоваться не нуклеотид-трифосфаты, как теперь, а нуклеотиды, активированные имидазолом. Такие нуклеотиды даже лучше справляются с этой работой, чем нуклеотид-трифосфаты, особенно при отсутствии катализаторов - полимераз.
Может быть, переход от нуклеотидов, активированных имидазолом, к менее эффективным нуклеотид-трифосфатам был обусловлен необходимостью предотвратить утечку нуклеотидов из клетки (нуклеотид-трифосфаты, как мы помним, сквозь мембраны не проходят). Это, конечно, произошло уже тогда, когда клетки научились сами синтезировать строительные блоки для синтеза нуклеиновых кислот и перестали «всасывать» их извне.
Нуклеотиды, активированные имидазолом, достаточно свободно проходят сквозь некоторые виды мембраны. На этом основании удалось создать плохонькую «протоклетку».
Взяли короткие молекулы ДНК с затравкой (праймером) и с недореплицированным «хвостиком», состоящим из 15 нуклеотидов Ц (цитидинов). Молекулы были помещены внутрь мембранных пузырьков. Эти пузырьки с начинкой — модельные протоклетки — поместили в среду, оптимальную для неферментативного синтеза ДНК. После этого протоклетки стали получать «пищу» — активированные имидазолом нуклеотиды. И в протоклетках пошла (хоть и очень медленно, по 96 мин. на нуклеотид) репликация ДНК. Тем самым была показана принципиальная возможность существования гетеротрофных протоклеток.
Хотя мне лично кажется, что сначала все-таки появились рибозимы – РНК-полимеразы, сообщества совместно размножающихся рибозимов, и только потом они обзавелись оболочками - мембранами.
Следы РНК-мира. У всех живых существ до сих пор в синтезе липидов важнейшую роль играет кофермент А, представляющий собой не что иное, как модифицированный рибонуклеотид. Это еще напоминание об РНК-мире.
В дальнейшем РНК-организмы приобрели два важных усовершенствования. Первое состояло в том, что они научились синтезировать аминокислотные полимеры — сначала короткие пептиды, а затем и длинные белки. Эти вещества стали для РНК-организмов универсальными помощниками, справляющимися с большинством биологических «работ» гораздо лучше, чем рибозимы. (Второе усовершенствование - ДНК, она точнее копируется и стабильнее, чем РНК)
Откуда взялась у РНК-организмов способность синтезировать белки? Чтобы ответить на этот вопрос, мы должны поближе познакомиться с рибосомами — сложными молекулярными «машинками», при помощи которых синтезируют белки все современные живые клетки.
Рибосомы у всех живых существ — от бактерий до человека — устроены очень похоже. По-видимому, это означает, что рибосомы в их «современном» виде имелись уже у Луки. Рибосома состоит из двух частей, или субъединиц, — большой и малой. Основу обеих субъединиц составляют молекулы рибосомной РНК (рРНК). Снаружи к молекулам рРНК прилегают молекулы рибосомных белков.
До недавнего времени казалось, что загадка происхождения рибосом вряд ли будет разгадана. В не осталось никаких «переходных звеньев», то есть более простых молекулярных комплексов, которые могли бы претендовать на роль «предков» рибосом. Но в 2009 году канадские биохимики нашли ключик к этой тайне в самой структуре рибосом современных организмов.
Они сосредоточились на главной части рибосомы —молекуле РНК, которая называется 23S-рРНК и является основой большой субъединицы рибосомы. Эта молекула велика: состоит почти из 3000 нуклеотидов. В клетке она сворачивается в сложный трехмерный «клубок». Петли, выступы и другие элементы этого «клубка» обеспечивают выполнение разных функций: связь с рибосомными белками, присоединение малой субъединицы, присоединение и удержание в нужных позициях молекул тРНК, которые несут на своих «хвостиках» аминокислоты, необходимые для синтеза белка.
Рибосомные белки играют в рибосоме вспомогательную роль. Главные действия, необходимые для синтеза белка, осуществляются рибосомными РНК. Это значит, что изначально рибосомы могли состоять только из рРНК. Главный этап трансляции — присоединение аминокислот к синтезируемой белковой молекуле — осуществляется молекулой 23S-рРНК. Поэтому логично предположить, что все началось именно с этой молекулы.
Однако 23S-рРНК слишком велика и сложна, чтобы появиться в результате случайного комбинирования нуклеотидов. Ключевой вопрос в том, могла ли 23S-рРНК произойти от более простой молекулы-предшественницы в результате постепенной эволюции (путем последовательного добавления новых фрагментов). Удалось показать, что структура 23S-рРНК свидетельствует именно о таком ее происхождении.
Целостность трехмерной структуры 23S-рРНК поддерживается связями между ее участками. Некоторые части молекулы сворачиваются в двойные спирали. К двойным спиралям «приклеиваются» другие участки, состоящие из нескольких идущих подряд аденозинов. Связи, возникающие между двойными спиралями и «стопками» аденозинов, необходимы для поддержания стабильной структуры той части молекулы, к которой принадлежит аденозиновая «стопка», но они не влияют на стабильность той ее части, к которой принадлежит двойная спираль. Если мы разорвем какую-то из этих связей, это нарушит структуру той части молекулы, где находится «стопка», но не причинит вреда той части, где расположена двойная спираль. Таким образом, если 23S-рРНК развивалась постепенно из простой молекулы-предшественницы, то сначала должны были появляться двойные спирали, и только потом к ним могли «пристраиваться» аденозиновые стопки.
Заметили, что в одной части молекулы имеется скопление двойных спиралей и почти нет аденозиновых стопок. Это наводит на мысль, что эволюция молекулы 23S-рРНК могла начаться именно с этого фрагмента молекулы.
Но если этот фрагмент был той «затравкой», с которой началась эволюция 23S-рРНК, то следует ожидать, что именно в нем находится какой-то важный функциональный центр молекулы. Так ли это? Оказывается, это действительно так: именно этот участок молекулы 23S-рРНК играет ключевую роль в присоединении аминокислот к синтезируемому белку (удерживает в правильных позициях «хвосты» двух молекул тРНК, обеспечивает сближение новой аминокислоты с предыдущей, и катализирует соединение аминокислоты с белком.
Обнаружив эти факты, исследователи перешли к более тонкому анализу структуры молекулы. Они подразделили ее на 60 блоков и проанализировали характер связей между ними. Фактически они рассматривали молекулу как сложный трехмерный «пазл» и пытались выяснить, поддается ли он сборке и разборке без поломки деталей. Оказалось, что молекулу действительно можно постепенно «разобрать», ни разу не нарушив структуру остающихся блоков. Можно отделять блоки один за другим, не нарушая ничего в оставшейся части. После этого остается «неразобранным» лишь маленький фрагмент молекулы, составляющий 7% от ее массы. Это тот самый каталитический центр, ответственный за удерживание двух молекул тРНК и присоединение аминокислот к белку.
Возможность последовательной разборки молекулы без повреждения остающихся частей — факт нетривиальный. Вряд ли это случайность. По-видимому, структура связей между блоками молекулы отражает последовательность добавления этих блоков в ходе эволюции молекулы.
Получается, что исходной функциональной молекулой — «проторибосомой», с которой началась эволюция рибосомы, — был каталитический центр молекулы 23S-рРНК, ответственный за соединение аминокислот.
Методом искусственной эволюции были получены рибозимы, способные катализировать соединение аминокислот, прикрепленных к тРНК, в короткие белковые молекулы. Структура этих искусственно выведенных рибозимов очень близка к структуре той проторибосомы, которую «вычислили» канадские биохимики на основе изучения структуры 23S-рРНК.
По-видимому, проторибосома была рибозимом, катализирующим синтез небольших белковых молекул в РНК-организме. Специфичность синтеза поначалу была низкой (аминокислоты выбирались более или менее случайно). В дальнейшем к проторибосоме добавлялись новые блоки, причем добавлялись они так, чтобы не нарушить структуру активного центра молекулы, а также всех тех блоков, которые присоединились ранее. Если очередная мутация приводила к нарушению уже сложившихся структур, она отсеивалась отбором.
Реконструкция постепенной эволюции 23S-рРНК. Блоки добавлялись последовательно, повышая стабильность и эффективность работы проторибосомы. В итоге проторибосома оказалась окружена другими блоками со всех сторон за исключением канала для выхода образующейся белковой молекулы.
Таким образом, 23S-рРНК, при всей ее кажущейся сложности, построена на основе простого принципа. Ее блочная структура свидетельствует о том, что она могла быстро развиться в ходе эволюции из проторибосомы под действием мутаций и отбора.
предыдущий раздел следующий раздел оглавление